MPX: Software for M ultiplexing Har dwar e Performance Countersin
Multithreaded Programs*

JohnM. May
LawrenceLivermoreNationalLaboratory
johnmay@linl.ge

Abstract

Hardware performancecountes are CPU registels that
countdataloadsandstores,cachemissesandotherevents.
Counterdata can help programmes undeistand softwae
performanceAlthoughCPUstypically havemultiplecoun-
ters, each canmonitoronly onetypeof eventat a time and
somecountes can monitor only certain events. Theefore,
someCPUscannotconcurientlymonitorinterestingcombi-
nationsof events. Softwae multiplexing partly overcomes
this limitation by using time sharing to monitor multiple
eventson one counter However, counter multiplexing is
harder to implementfor multithreadedprogramsthan for
single-theadedonesbecausef certaindifficultiesin man-
agingthelengthof thetimeslices.

Thispaperdescribes softwae library calledMPX that
overcomesthesedifficulties. MPX allows applicationsto
gatherhardware counterdata concurently for any combi-
nationof countablesvents.MPX dataare typically within a
few percentof countsrecodedwithout multiplexing.

1 Introduction

For mary years CPUshave includedregistersthatcount
various hardware events while code executes. Counted
eventstypically includeload and storerequestsmissesin
Level 1 andLevel 2 (L1 andL2) cacheandin the trans-
lation lookasidebuffer (TLB), floating-pointinstructions
completedandso on. The counterswereintendedto help
the designersf the hardwareandlow-level software eval-
uatetheir systemsandtheir programminginterfaceswere
not availableto generalusers.However, sincecounterdata
can help applicationprogrammergune their codes,hard-

*Appearsn Proc. 2001InternationalParallel andDistributedProcess-
ing Symposium@) 2001IEEE. Personaliseof this materialis permitted.
However, permissionto reprint/republishthis materialfor adwertising or
promotionalpurpose®r for creatingnew collective worksfor resaleor re-
distribution to senersor lists, or to reuseary copyrighted componenbf
thiswork in otherworks mustbe obtainedirom the IEEE.

ware vendorshave begun to publish the interfaces. Each
vendorusesa differentprogramminginterface,and differ-
entCPUtypes(evenfrom the samevendor)may countdif-
ferenttypesof events.At leasttwo projectshave developed
uniform interfacesthroughwhich applicationscan access
counteron differentoperatingsystemg1, 5, 6].

Many useful measuref application performancein-
volve combinationf events. Cacheutilization, for exam-
ple, is the fraction of load requestghat are satisfiedfrom
the cache. Unfortunately someCPUscannotcountloads
and cachehits (or misses)at the sametime. Although
most CPUshave multiple counters differentcountersare
designedto monitor different types of events. A single
countercan monitor only one of type of event at a time,
sotwo eventsthatthe hardware designhasassignedo the
sameregister cannotnormally be countedsimultaneously;
theseeventsare saidto be “conflicting.” In the PoverPC
604earchitecturefor example,loadsandL1 cachemisses
areconflicting events[4]. Evenif all registerscould count
everytype of event,ausermightwantto countmoreevents
concurrentijthantherearecountemegisters.

Time sharing(multiplexing) can solve theseproblems.
One register countsdifferent event types during separate
time slices,andthe multiplexing softwarecanestimatehow
mary timeseachtype of eventoccurredf it candetermine
how long the counterspentmonitoring eacheventtype as
a ratio of the total measuremenperiod. One of the two
maincontributionsof this papelis atechniqueor determin-
ing thisratio accuratelyunderawide rangeof measurement
conditions,asdescribedn Section4.

Simple multiplexing algorithms produce adequatere-
sultswhenthey measureone rangeof codeat a time, but
they don't work well for overlappingmeasurements.In
multithreadedcodes,for example, the user may wish to
monitor the performanceof several threads(running on
the sameor different CPUs)asthey executeconcurrently
Usersmay also wish to measureoverlappingregions of
codewithin a single thread. The secondmain contribu-
tion of this paperis a setof techniquedor using counter
multiplexing in multithreadedcodesand other overlapped

measurement$Section3 briefly describesiow applications
initiate overlappedmeasurementgnd Section5 describes
softwarethatimplementghem.

Thesemultiplexing and overlappingtechniquesareim-
plementedn alibrary calledMPX, which hasbeentested
onanIBM RS6000/SRomputemvith SMPnodeghateach
containfour PoverPC604eCPUs. The nodesrun IBM’s
AIX 4.3operatingsystem.However, thetechniquesrenot
specificto a particularprocessopr operatingsystemMPX
isimplementedntop of PAPI [5, 6], asystem-independent
interface for hardware performancecounters. Section6
comparesheaccurag of MPX countswith nonmultiplexed
countsgatheredusingPAPI.

2 Background and related work

Severalhardwarevendorspublishinterfacego their sys-
tems’ CPU performancecounters ExamplesncludeSGl's
Perfex [7] andIBM’ s Performancéonitor API [3]. Com-
paqs ProfileMe[2] tool takesa differentapproachijt sam-
plesinstructionsas a code executesand determineswhat
hardwareeventseachof theseinstructionscaused.

SomeCPUs and operatingsystemscan measurecom-
binationsof eventsconcurrentlywithout specialsoftware.
Pentiumscan count most eventsin ary counterregister,
althoughmultiplexing would still increasethe numberof
eventsthat can be countedconcurrently SGI's IRIX has
built-in countermultiplexing: the systemcan switch the
eventthat eachregisteris countingevery 10 milliseconds.
It computeghe total numberof eventsof a giventype by
multiplying theobsenedcountfor aneventtypeby number
of eventtypesthatweremultiplexed.

Eachvendorinterfacereflectsthe uniquecapabilitiesof
the hardware and operatingsystem. Sincemary applica-
tions can run on multiple platforms, usersof proprietary
counterinterfacescannotdevelopportableinstrumentation.
Multiplatform interfaces suchasPCL andPAPI, canmask
someof the differencedbetweerplatforms.

The PCL [1] (PerformanceCounterLibrary) projectis
basedat the Forschungszentrurdiilich (a Germannational
researchcenter). It definesa simple interfacefor perfor
mancecounterson Alpha, MIPS, Pentium,PaverPC,and
UltraSFARC processorsilt allows nestedneasurementsn
overlappingregionsof code,but it doesnot explicitly sup-
port multithreadingor multiplexing.

ThePAPI [5, 6] (Performancé\pplicationProgramming
Interface)projectis basedat the University of Tennessee,
Knoxville. It supportshe sameprocessofamiliesasPCL.
PAPI allows measurementsn overlappingregions, andit
alsoworkswith threadecdcode,if thereis threadsupportin
the underlying hardware counterinterface. PAPI was de-
signedto accommodatenultiplexing, but this featurewas
notin theinitial implementationindeed thetechniquesle-

scribedin this papemaybecomehe basisfor multiplexing
in PAPI. At presenthowever, MPX is built ontop of PAPI
andusesonly its standardnterfaces.

Although multiplatform interfacesattemptto hide sys-
tem dependenceghey still work somevhat differently on
eachmachinebecausef underlyinghardwaredifferences.
Someevent typesmay be countableon somesystemsbut
not on others,andcorrespondingeventscan have different
meaningon differentmachines.For example,onesystem
might count a floating-pointmultiply-add instructionas a
single floating point operationwhile anothercountsit as
two. Therefore performancealatagatheredn differentma-
chinesis notgenerallycomparable.

3 Event sets

MPX bothusesandimitatesthe PAPI programmingn-
terface. The two systemsdefine an event set structure,
which lists hardware eventsto be countedtogether PAPI
and MPX implementevent setsdifferently, so thesedata
structurescannotbe usedinterchangeabljpetweenthem,
but the basicideasare the samefor both systems.A pro-
gramdefinesan eventsetby calling a constructorfunction
with a list of events. Programsinitiate measurementby
passingan event setto a startfunction, and countingcan
proceedon multiple event setsat the sametime. In PAPI,
though,counterconflictslimit which setscanrun together
MPX removesthis restriction.

In both systems,a programcan reador resetcounters
for any running event set. Programscan specify options
for event setsthat definecertainmeasurementharacteris-
tics, suchaswhethereventsthat occurin kernelmodeare
counted. Thesefeaturesare only partly implementedin
both PAPI and MPX. Both are thread-safeand can count
eventsseparatelyor differentthreads At presentthey can-
notdefineprocess-wideventsetsthatcountall eventsin all
threads.Although MPX mimicsthe major functionality of
PAPI, it doesnotincludecorrespondindunctionsfor every
functionin the PAPI library.

4 Multiplexing

Countermultiplexing involves sharinga single counter
amongseveral event measurementsver a time period7T'.
(T and othertimes may be measureceitherin secondsor
in processocycles.) During this time, the counterwill be
programmedo measurdaifferenteventtypesin sequence.
Eacheventtype,e, will bemeasurediuringa seriesof time
slices. The durationof the i"" slice for evente is Si,e, and
si,e canvary with 4. At the end of eachslice, the num-
ber of eventscountedis addedto a cumulative total for e,
andthe counterwill begin countinga new eventduringthe

next time slice. For eacheventtype, the userwould like to
know N., the numberof timese occurredduringT'. If a
counteris multiplexed, an exact valuefor N, is not avail-
able, since someoccurrencef e will happenwhen the
counteris recordingotherevent types. However, if e oc-
cursatareasonablyonstantrateduring T, then N, canbe
estimatedasfollows: Let C, betheactualcountof e accu-
mulatedoverT andletS, =)", s; ; thatis, S, is thetotal
time eventsof type e werecounted.Then

N, ~ Cesze.
CountingC, is easy but computingS, andT" canbe more
difficult, asthefollowing discussiorwill show.

MPX triggersthe switching of countersfrom oneevent
typeto thenext usingthe Unix interval timerandsignalhan-
dling features. At the beginning of a measuremenfyIPX
callsset i ti mer to deliverasignalafteraspecifiednter-
val (10 millisecondsby default). Thel TI MER.VI RTUAL
flag is set, causingthe timer to counttime only whenthe
procesghatinitiatedit is running.

Oneeventtype, e;, is chosenfrom the users eventset,
anda hardware counteris programmedo monitore;. The
applicationthen proceedswith its computation.Whenthe
timer expires, Unix invokesthe signalhandler The han-
dlerhaltscountingof e; , storeghecurrentcount,andstarts
countingez. The timer automaticallyresetsitself. When
the last eventin the sethasbeencounted,e; is scheduled
again,andthis sequenceontinuesuntil the measurement
periodends.

An early implementationof MPX computedS, and T
by countingthe numberof times, k., thateachevente was
scheduledo be counted. For eache, it computedS, =
kes, where s is equalto the fixed timer interval. It then
computedl” = }°_ S.. In thefinal computationof N, s
appearsn both the numeratorandthe denominatorso its
actualvalue cancelsout. The software also madea small
correctionto accountfor the partialtime slice at the end of
ameasuremeryeriod.

This approachproducedacceptableresultsfor simple
measurementdyut it doesnot work for measurementm
threadegrograms.The problemis thatmary systemshave
onevirtual timer perprocessnotoneperthread.Moreover,
the signal generatedvhenthe timer expires can be deliv-
eredto ary thread. Thesesystemshave no way to setup
separatdimers for separatahreads. As the next section
will shav, onesignalhandlercansene all thethreadsn a
processbut thevalueof s will vary. Althoughthetimer ex-
piresat fixed intervals from the perspectie of the process
asawhole, multiple threadsunningon one CPUwill have
their handlerdgnvokedat unpredictabléntervals. The prob-
lemis lessseverewheneachthreadrunsonadifferentCPU,
but variationsin thetime slicefor eachthreadcanstill arise

from the techniqueMPX usesto schedulethe countersin
multiple threads.

To computeS, accurately the software must measure
si,. separatelyfor eachtime slice of eachevent measure-
ment.MPX doesthis by countingprocessocyclessimulta-
neouslywith eachevent. This solutionassumeshat pro-
cessorshave two or more event counters,and that every
countercanmeasureeycles. An informal surwey of current
CPUssuggestshattheseassumptionarevalid. Therefore,
no matterwhat eventis chosento run during a giventime
slice, MPX canalwayscountcyclessimultaneouslyn an-
othercounter Eachtime the signalhandlerinitiatesa dif-
ferent event type measurementt updatesboth C, anda
runningcountof S.. It alsomaintainsa running countof
T'. With this information, the software caneasilycompute
anestimateof NV, eitherafterameasuremeris completeor
while it is still running.

MPX countsonly oneeventtype (otherthancycles)ata
time. An alternatve approachwould be to schedulemul-
tiple nonconflictingevent measurementsn the available
countersduring eachtime slice. Since someeventtypes
couldthenbe measurednoreoften, S, would increasdor
thoseeventtypesandpossiblyproducemoreaccurateesti-
matesof N.. However, analgorithmfor selectingcompat-
ible combinationsof active eventtypeswould needto bal-
ancethe goal of maximizingcounterusageagainstheneed
to scheduleeacheventtype oftenenoughto produceuseful
data. Suchan algorithmwould eitherneedto run at every
time slice, or elsea fixed scheduleof counterusagewould
have to be computedevery time aneventsetwasstartedor
stopped. The potentialincreasein accurag to be gained
from this designdoesnot appearto justify the addedcom-
plexity, since,as Section6 notes,the accuray is already
quitegoodin mostcases.

5 Overlapping measurements

Somemeasuremertiasksrequirecountermeasurement
periodsto overlap. Figure 1 shaws threetypes of over-
lappingmeasurementartial overlap,nesting,and multi-
threading.Partial overlapoccurswhenan applicationiniti-
atestwo or moreseparateneasurementgndonemeasure-
ment period begins before a precedingperiod hasended.
Nestingoccurswhenonemeasurementeriodoccurscom-
pletely within anothermeasuremenrperiod. Multithreaded
overlap occurswhentwo or more threadscarry out mea-
surementgon the sameor differentregions of code)con-
currently Individual threadsmay be scheduledo run on
thesameor differentCPUs, andthe softwaremustwork cor-
rectly andaccuratelyin eithercase.However, theresultsof
somemeasurementmay well be differentin the two cases
becausehreadsrunningin parallelmay interactwith each
otherdifferentlyfrom threadsscheduledgequentiallyonthe

Partial overlap

St art Count er (Event Set 1) ;
(code)

St art Count er (Event Set 2) ;
(code)

St opCount er (Event Set _1) ;
(code)

St opCount er (Event Set 2) ;

Nested

Start Count er (Event Set 1) ;
(code)

St art Count er (Event Set 2) ;
(code)

St opCount er (Event Set _2) ;
(code)

St opCount er (Event Set _1) ;

Threadl

Start Count er (Event Set 1) ;
(code)
St opCount er (Event Set _1) ;

Multithreaded

St art Count er (Event Set 2) ;
(code)
St opCount er (Event Set _2) ;

Thread2

Figure 1. Three types of overlapped counter measurements.

sameCPU.

All threecasegequirea level of abstractionabove the
basichardware, that permitsmultiple concurrentmeasure-
mentsto usethe samecounterregisters. PAPI and some
vendorspecificlibraries provide this abstraction.In PAPI,
eacheventsetmaycontainoneor moreevents,upto theto-
tal numberof countersavailableon the CPU. Severalevent
setscanbe definedandrunin overlappingregionsof code,
aslong asthey containno conflictingevents.

Overlapping measurementgresenttwo further chal-
lengeswhenthe counteribrary supportamultiplexing:

e Eachthreadmustcorrectlyexecutethe schedulingal-
gorithm that sharesthe counterregistersamongthe
eventtypesbeingmeasured.

e The multiplexing library must attribute cycles and
eventsmeasurediuring a time slice to multiple event
sets.

5.1 Multithreading

MPX hasbeenimplementednanI|BM RS6000/SRvith
four CPUspernode. The systemrunsAIX 4.3,which has
perprocesqratherthanperthread)timersandsignalhan-
dling. Therefore pnetimer mustsene all thethreadsn the
process.

MPX maintainsa list of the threadsor which the appli-
cationhasrequested¢ountermeasurementg&alled“count-
ing threads”). When the timer expires and triggers a
signal, the handlermay run in ary one of the process
threadsThis“timer handlingthread”’mightnotbea count-
ing thread,andit mightnotevenberunningusercode.The

handlerfunction will traversethe list of countingthreads
andsenda SIGVTALRM signalto eachone(exceptitself)
using the pt hr ead ki | | function. (Despiteits name,
pt hread ki I | can sendary kind of signal, not just
SIGKILL.) Thehandlemwill alsoincrementglobalcounter
of threadsthat shouldrespondto thesesignals(Figure 2).
Thetimer handlingthreadwill thenexecutethe restof the
handlercode,asdescribeelon. Eachcountingthreadre-
ceiving a signalwill activatethe samesignal handlerthat
the timer handlingthreadused. However, unlike the timer
handlingthread these"receving threads’mustnot reissue
thesignal,or they would createanendleshainof signals.
Instead they examinethe global counter;if it is nonzeroa
threadwill know thatit is a receving threadratherthana
timer handlingthread.It will decrementhe global counter
andexecutethe restof the handlercode. The counterwill
reachzerowhen the last receving threaddecrementghe
global counter Whenthe timer expires again, the thread
respondingo the signalwill recognizethatit is the timer
handlingthread.

The timer automaticallyresetsitself to deliver another
signal after the specifiedinterval has expired again. Po-
tentially, this could happenbeforeall the threadshad re-
spondedo the previoussignal.If thethreadarbitrarily cho-
senby the operatingsystemo handlethe signalalreadyhas
apendingsignalfrom apt hr ead ki I | call, thenew sig-
nal will simply be dropped.If the chosenthreaddoesnot
have a pendingsignal,it will invoke its handlerandbehae
as a receving thread. The global counterwill be decre-
mentedan extra time in that case,and the last receving
threadto handleits signalwill find the global counterhas
reachedzero. It will thereforebehare asa timer handling

static int threads_responding = 0

| ock(countingthread.list_ock)

i f(threads_responding == 0) { /1 timer-handling thread
for each counting thread t other than this thread {

++t hr eads_r espondi ng
pthreadkill (t,

} el se --threads.respondi ng

SI GVTALRM) // si gnal

unl ock(counting.thread.llist_|ock)

if(this thread is counting) {
/1 Code for recording event
/1 and switching the current event goes here.

thread t

/'l receiving thread

and cycl e counts

Figure 2. Pseudocode for managing timer signals in a multithreaded program.

threadandreinitiatethedistribution of signals.If timer sig-
nalscontinueto arrive fasterthanthe handlerscanoperate,
the handlerswill run correctly but the programwon’t get
muchwork done.This situationis unlikely to arisein prac-
tice becauseasSection6 shaws, the timer interval is typi-
cally muchlargerthantherunningtime of thehandler

In analternatve implementationthe handlerswverepro-
grammedto restartthe timer only after the last receving
threadhadfinishedexecutingits handler However, in some
casessignalswere dropped,causingthe handlersto cease
operatingentirely.

5.2 Managing overlap

MPX usesthe PAPI infrastructure,which can already
handle overlapping measurements. However, handling
overlapfor multiplexedcountersgequiresadditionaleffort.

In PAPI, if a programstartsan event setwhenanother
setis alreadyrunning, PAPI noteswhich individual events
appeatin both setsandrecordstheir currentcounts. Each
eventin the new setthatis not alreadyrunningis assigned
to a counter provided thereare no conflicts. If a conflict
is found, PAPI returnsan error codeinsteadof startingthe
new set.

MPX usesa“mastereventlist” to manageoverlap.This
list includesall theeventsthatappeatn theMPX eventsets
createdby a particularthread. Eachdistinct event appears
only oncein thelist, and MPX permitsan eventsetto be
usedonly by the threadthat createdit. The list maintains
a cumulative countof C, and S, (the obsened countand
event measuremertime) for eachevent. Eacheventalso
carriesa referencecount, which indicateshow mary dif-
ferentMPX event setsusethat event, and an “activation”
countthat indicateshow mary of theseevent setsare cur-

rently running.An activationcountgreatethanzeromakes
aneventeligible to be scheduledEachthreadhasno more
thanoneeventdesignatedsthe “currentevent;” thisis the
eventtypethatthe hardwareis actuallycountingat a given
moment(alongwith cycles). If no eventsetfor a threadis
active, thenthereis no currentevent.

Whenan MPX eventsetis started,the activation count
for eachof its eventsis incrementedandif thereis no cur-
rentevent, oneis chosenfrom this set. MPX alsorecords
thecurrentvaluesof C, andS, for eacheventin theset.For
eventsthatarenot alreadyactive, thesevalueswill bezero.

When the handlerfor a threadexecutes,it first deter
mineswhetherto sendary additionalsignals,asdescribed
in Section5.1. Thenit stopsthe currentevent (if ary) for
that thread,addsthe countervalue andthe cycle countto
C. andS., andselectshe next active eventfrom the mas-
terlist. Thehardwareis programmedo begin countingthis
new currentevent. MPX relieson the underlyingcounter
softwareto gatherthread-specificounterdata.

WhenanMPX eventsetis stoppedr read the software
readsthe currentstoredvaluesof C, andS, for eachevent
andsubtractgheinitial valuesrecordedearlierto compute
C. and S, for the period during which the event setwas
running. The softwarealsodeterminesvhetherthethreads
currenteventis amongtheeventsin thesetbeingread.If so,
thecounterandcycle countfor thateventarereadandadded
to the runningtotal. (A similar correctionfor the current
eventis appliedwhenan eventsetis started.) Eachevent
setalsomeasureq” (thetotal durationof the measurement
period)while it is running,andwith this informationMPX
canestimateN,, thetotal eventcount,for eacheventtype
asdescribeckarlier

When an MPX event set is destryed, the reference
countsfor the correspondingeventsin the masterlist are

decrementedand ary event type whosereferencecount
reachegzerois removedfrom themastedist.

6 Performance

This sectiondescribeghe accurag andthe overheadof
theMPX measurements.

The default time slice ¢t for multiplexing is 10 millisec-
onds. (In the versionof AIX usedfor thesetests,non-
privileged userscannotset shortertimer intervals.) How-
ever, thereis no guaranteghat the actualinterval for each
countermeasurementill be closeto this valuebecausef
the schedulingcomplexities describedin Section4. The
length of a time slice limits the granularity of measure-
mentfor MPX. If themeasuremenieriodT is lessthanthe
time slice, only thefirst eventtype scheduledvill be mea-
sured;othereventtypeswill notbe counted.In generalfor
eventsetsthatcontainn eventtypes,measurementeriods
of T < t(n — 1) will notproducedatafor someevents.

Figure3 shavstheaccurag of themultiplexedmeasure-
mentscomparedo the nonmultiplexed measurementfor
four eventtypes. Thesemeasurementaere taken asfol-
lows: a seriesof loops performingfloating-pointmultipli-
cationandadditionwererun for specifiednumbersof iter-
ations, rangingfrom 2!7 to 224 by whole powers of two.
For a 10 millisecondtime slice on the 332 MHz testsys-
tem,t = 10 ms x 332 MHz = 3.32 x 10°® cycles For
four multiplexedevents,n = 4, soameasuremergeriodof
T > tn = 13.3 million cycleswill producecompletedata.
Thecycle countsfor the2!7-iterationloopsrangedrom 5.3
million to 8.6 million, sotestsonloopsof thissizeproduced
valid datafor only someof theevents;therestwerereported
aszero. The computationsiseddatastoredin large arrays,
andthreeseparatdéoopstypeswereexecuted:onewastiled
to maximizeL1 cacheutilization, onewasuntiled,andone
usedrandomindirect array referencego minimize cache
reuse. For eachloop, the test programcountedtotal cy-
cles, L1 datacachemisses total floating point operations
(FLOPs),and numberof load requests.First, MPX mea-
suredall theseeventsconcurrentlyandthenthe testswere
repeatedvith PAPI measuringeacheventtype separately
For theindirectaddressingneasurementshetestsoftware
usedthesamesequencef indirectarrayreferencesor both
theMPX andthe PAPI measurements§.hegraphsshawv the
ratio of the valuesmeasuredisingMPX to the correspond-
ing valuesmeasuredising PAPI alone. Althoughthereare
afew outliers, especiallyfor lower numbersof eventsand
for multithreadedmeasurementshe MPX measurements
were usuallywithin 5% of the PAPI numbers.Frequently
theresultsagreedwithin 1%.

The most significant inaccuraciesappearedn the L1
cachemiss measurementfor the tiled loops. MPX over-
estimatedhe countsby up to 70%. Theseerrorsare prob-

ably dueto cachepollution by the MPX handlersoftware.
Eachtime the handlerruns,it evicts somedatafrom thelL1
cache.Whenthe handlerreturns,the computatiorloop in-
cursnumerouscachemissesthat would not have occurred
if the handlerhadnot run. Of coursethesecachemisses
alsooccurfor the untiledandindirectaddressindoops,but
thelattertwo loopswould have incurredcachemissesary-
way becauseahey arenot tunedfor goodcacheutilization.
Thereforethe numberof excesamissesdueto cachepollu-
tion by the handleris muchgreaterfor thetiled loops. The
exactnumberof excesscachemissesvarieswidely, but typ-
ical valuesarein therangeof a few thousandgperexecution
of the handlerfor the tiled loopsandfew hundredfor the
otherloops. The numberof excesscachemissesyrows for
thetiled loopswith longerrunsbecausesachexecutionof
thehandlercauses new setof cachemisseswhereaswith-
out the intrusion of the handler the tiled loop would nor-
mally incursmary missesnitially asit broughtdatainto the
cache put thenit would reacha steadystatewith far fewer
misses.Inaccuratecachemissmeasurement®r computa-
tions with highly tunedcacheusageis the main drawvback
of the MPX multiplexing software.

For the multithreadedests,multiplexing wassomevhat
lessaccuratethan for single threading,but still generally
quitegood(Figure4). Thecycle countdataappearso shav
significantinaccurag for all measurementypes, but this
datais misleading. For the multithreadedests,the actual
run times of the testsdo vary somavhat. Sincethe MPX
andPAPI cycle countsare for differentruns,the disagree-
ment betweenthe two is due to actualdifferencesin run
time, not inaccuratemeasurementln fact, the cycle count
datafor MPX is very accuratédbecauséVPX countscycles
continuallyin oneof theregisters.Any differencedetween
MPX and PAPI shouldbe dueonly to the overheadof the
MPX software (discussedt the endof this section).Sepa-
ratetestswereconductedn whichthecycle countwasmea-
suredusingPAPI andMPX simultaneouslyluringan MPX
multiplexed measurement(This was possiblebecausehe
PaverPC604ecanmonitor cyclesin ary of its four coun-
ters; MPX usedtwo of theseregistersat a time, and PAPI
usedoneof the others.) In thesetests,the PAPI andMPX
cycle countsagreedwithin 1%.

Themainoverheadf theMPX softwareis in thehandler
thatrespondsvhenthe timer expires. For single-threaded
programsthis handlerexecutedn about160microseconds
onthetestsystemandvaryingthe numberof eventsmulti-
plexeddidn’t changehistime significantly (With noevents
being counted,the overheaddroppedto 50 microseconds
or less.) For programswith four threadson a four-CPU
node,the handleroverheadvaried from about170to 215
microsecondsThesenumbersdo notincludethe overhead
of the systemsoftwarethatinvokedthe signalhandler Not
all of thehandlertime appearsn thecycle countfor amea-

1.1 1.1

1.05 1.05
11¢ x 8 & ® 8 § ¥ 1 T
o
O

0.95 0.95

09 T T 09 T T T

1.E+05 1.E+06 1.E+07 1.E+08 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

FLOPs Loads

2 1.1
1.8 5
1.6
14 1.05
1.2 50

1 050 Ox Ex Ex-Ex X 1 & 8 & dhghgngn X X
0.8
0.6
0.4 0.95
0.2

0 T T T 0.9 T T T

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

Level 1 Data Cache Misses Cycles

O Untiled loop < Tiled loop

x Indirect addressing

Figure 3. Accuracy of MPX measurements compared to PAPIl-only measurements as a function of
the number of events counted. Values greater than one indicate that MPX overestimated the event

count; values less than one indicate underestimation.

single-threaded program.

suredprogram,becauséehe hardware countersare stopped
partway throughthehandlerandrestartecheartheend. The
interveningcomputatiorto updatevariouscountsandselect
thenext currenteventhapperfoff theclock” Of coursethe
total overheaddoesaddto the wall-clock time of the pro-
gram, but sincethe handlerrunsonly aboutonceevery 10
millisecondstheeffectonruntimeis small.

7 Conclusions

Ideal hardware performancecounterswould be able to
measurary combinationof eventsconcurrently However,
sincemostcurrentCPU designdack this flexibility, multi-
plexing is a usefulalternatve. For coderegionsthatrun for
areasonablyong time, multiplexing canproduceaccurate

Measurements in this figure were made on a

performancealatawith minimal overhead.

The softwaredescribedn this paperimplementsmulti-
plexing on top of the PAPI library, andit supportspartly-
overlapped hested.and multithreadedmeasurementsk-u-
ture enhancements$o this software may include imple-
menting more PAPI functionality (or meming the soft-
ware into PAPI) and improving accurag for short mea-
surementperiods and multithreadedprograms. MPX is
availablefor downloadfrom ht t p: / / www. | | nl . gov/
CASC/ downl oad/ downl oad_hone. ht i .

Acknowledgments

I thankPhil Mucci andthe PAPI teamfor developingthe
software on which MPX is based. Phil was very helpful

1.1 1.1
1.05 1.05
0.95 +4 0.95 =5
09 T T 09 T T T
1.E+05 1.E+06 1.E+07 1.E+08 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09
FLOPs Loads
2 1.1
1.8 X y X X
1.6
1.05
1.4 o3 g X
12§99 8 x 5%y
1 &WZOOEXDVDVD = - 1 x He 9o gg o ;2
o
0.8 D%gg 5°8°5°H
0.6 © o
0.4 O 0.95 05
0.2
0 ‘ ‘ ‘ 0.9 ‘ ‘ ‘
1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10
Level 1 Data Cache Misses Cycles

O Untiled loop < Tiled loop

x Indirect addressing

Figure 4. Accurac y of MPX measurements for a program running four threads.

discussion of the cycle count data.

in discussingapproacheso multiplexing, answeringques-
tions, andrespondingo problemreports. DeborahWalker
and Bronis de Supinskiof LawrencelLivermoreNational
Laboratorymademary usefulcommenton early draftsof
this paper Bronisalsosuggestedmprovementsn the data
collectiontechniques.

This work was performedunder the auspicesof the
U.S. Departmentof Enegy by University of California
Lawrence Livermore National Laboratory under contract
numberW-7405-Eng-48UCRL-JC-140186Rev 1.

References

[1] R. Berrendorfand H. Ziegler PCL—The Performance
CounterLibrary: A Commoninterfaceto AccessHardware
Performance Countes on Microprocesscs (Version 1.3).

(2]

(3]

[4]

5]

See the text for a

Centrallnstitute for Applied Mathematics ResearchCentre
Julich GmbH, Julich, Germary, November1999.

J. Dean,J. E. Hicks, C. A. Waldspuger, W. E. Weihl, and
G. Chrysos. ProfileMe: Hardware supportfor instruction-
level profiling on out-of-orderprocessors. In Proceedings
Thirtieth AnnuallEEE/ACM InternationalSymposiunon Mi-

croarchitectue, page292-302December1997.

F. E. Levine andC. P. Roth. A programmes view of per
formancemonitoringin the PoverPCmicroprocessor IBM
Journal of Reseach and Development41(3),May 1997.

Motorola, Inc. PowerPC604eRISCMicroprocessorJser’s
Manual 1998.

P J. Mucci, S. Browne, C. Deane,and G. Ho. PAPI: A
portableinterfaceto hardware performancecounters.In De-
partmentof DefenseHPCMP Users Group Confeencel999
June1999. http://icl.cs.utk.edu/projects/
papi / dodugnD9/ papi . htn .

[6] Performancedatastandardand API. http://icl.cs.
ut k. edu/ proj ect s/ papi / , June2000.

[7] M. Zagha,B. Larson,S. Turnet and M. ltzkowitz. Perfor
manceanalysisusing the MIPS R10000performancecoun-
ters.In Proceeding®f Supecomputing96, Novemberl996.

